Фрезерный станок с ЧПУ: неограниченные возможности обработки рельефных форм. Фрезерные станки с ЧПУ — виды и особенности Технологические возможности фрезерного станка с чпу

Это автоматизированное устройство для работы с заготовками и получения готовых продуктов из разных материалов (камень, стекло, пластик, металл, дерево и пр.). Принцип работы фрезерного станка зависит от ряда параметров: вид операции (черновая или чистовая резка), используемого инструмента (модели фрезы), формы готового изделия (цилиндр, квадрат, плоское, трехмерное). Так же немало важную роль играет и конструкция устройства, его системы охлаждения, высоты портала, его длины и ширины.

Обработка

Фрезеровка прочных материалов (камень, металл) происходит на очень высокой скорости - от 25 до 30 тысяч оборотов в минуту. Менее прочные материалы (заготовки из дерева) обрабатываются при скорости - 18 тысяч оборотов в минуту. А совсем мягкие изделия, такие как, пластик и стекло, чаще всего обрабатываются при 4 - 5 тысяч оборотов в минуту. Возможность изменять скорость вращения шпинделя осуществляется с помощью инвертора в конкретном техническом пр. Обратите внимание, что сильное снижение скорости вращения уменьшает крутящий момент на валу шпинделя. Это возможно компенсировать, используя инвертор, но только частично, поддерживая крутящий момент (специальная функция).

Дополнительные опции

В наше время фрезерные станки с ЧПУ обладают рядом дополнительных устройств, для упрощения работы и увеличения технологических возможностей станка. Например, в момент фрезеровки деревянных изделий у современных станков с ЧПУ есть возможность исключить попадание отходов производства в важные детали станка. Для этого используется система аспирации, которая высасывает и удаляет стружку с зоны резки.

Если необходимо изготовить более сложное, фигурное изделие (например, балясину) на фрезерных станках устанавливается поворотное устройство.

Во время чистовой фрезеровки деталей, чтобы получить гладкую поверхность и края резки используются однолезвийные спиральные фрезы.

При фрезеровке твердых материалов (гранита, металла) происходит сильный нагрев шпинделя и самой фрезы. Системы охлаждения бывают разных типов:

  1. Поток под давлением направляет жидкость на саму фрезу.
  2. Распыление масла в виде тумана «масляный слой».

Размеры рабочей поверхности и высота портала выбирают исходя их габаритов обрабатываемой заготовки. Соответственно рабочий стол фрезерного станка с ЧПУ должен быть больше размеров обрабатываемой заготовки. Расчет высоты портала (параметры оси Z) высчитывается из расстояния от верхней точки рабочей поверхности до расположения фрезы на шпинделе. Высоту необходимо выбрать из максимальной толщины обрабатываемых материалов, учитывая при этом запас. Устанавливая поворотный механизм учитывайте, для обработки вращающихся заготовок, что высота портала должна быть не меньше 150 мм.

Станины станка

Станины станка могут быть литыми из чугуна или стали, сварными из толстостенных стальных труб прямоугольного сечения. Литая станина из чугуна лучше гасит вибрацию, но тяжелее. Литые стальные станины легче, ремонтируются методом сварки.

Большой выбор фрезерных станков с ЧПУ в нашем Интернет-магазине

Системы ПУ – цикловые и числовые

Цикловые – позволяют запрограммировать последовательность и скорость перемещений подвижных органов станка. В настоящее время не применяется.

При ЧПУ вся программа работы станка записывается на программоносителе в виде комбинаций сигналов, выражающих цифры, а также буквы и другие символы.

В состав такой программы входят и числовые значения перемещений подвижных органов станка, что составляет принципиальное отличие станка с ЧПУ от станка с цикловым ПУ.

Управляющая программа для обработки на станке с ЧПУ записывается на программоносителе в виде отдельных блоков информации или кадров, разделенных определенными знаками. Каждый кадр программы содержит информацию, необходимую для выполнения станком некоторой группы команд.

В состав одного кадра могут входить: требуемые значения перемещений инструмента по осям координат, подача, скорость вращения шпинделя, а также другие данные необходимые для выполнения станком заданного цикла работы, например команды на включение и выключение охлаждения, указания о направлении движения рабочих органов станка и др.

Практически в производственных условиях управляющей программой называют программоноситель с нанесенной на нем в том или ином коде информацией о полном цикле обработки заготовки на данном станке. Исходной документацией для разработки управляющей программы является чертеж, обрабатываемой заготовки, технологическая карта , а также расчетно-технологическая карта (РТК) или схема движения инструментов при обработке. Эта документация при ручном способе подготовки программ позволяет технологу программисту заполнить карту программирования по которой изготавливается управляющая программа.

Системы ЧПУ по характеру управления движения рабочих органов станка делятся на две группы: позиционные (координатные) и контурные (непрерывные)

Позиционное управление (Гост 20523-80) представляет собой числовое программное управление станком, при котором перемещения его рабочих органов происходит в заданные точки, причем траектории перемещения не задаются.

Контурное управление (ГОСТ 20523-80) – это ЧПУ станком, при котором перемещение его рабочих органов происходит по заданной траектории и с заданной скоростью для получения необходимого контура обработки. Контурные системы могут работать и позиционном режиме, однако очень дороги.

Кроме упомянутых существуют: системы цифровой индикации положения и системы цифровой индикации с ручным вводом данных. При этом на экране такой системы непрерывно указываются численные значения координат подвижных органов станка. Применяются на универсальных станках.

В соответствии с рассмотренной классификацией систем по характеру управления введена спец. индексация в обозначениях моделей станков с ЧПУ

Ц - станки с цикловым управление; Ф-1 – станки с цифровой индексацией положения, а также ручным вводом данных; Ф-2 – станки с ПСПУ; Ф-3 – станки с контурными системами управления.

Кроме того, выведены индексы отражающие конструктивные особенности станка, связанные с автоматической сменой инструмента: Р – смена инструмента поворотом револьверной головки; М – смена инструмента из магазина; МФ3 – станок с контурной системой управления с магазином инструментов.

В обозначениях некоторых моделей станков используются такие индексы Ф4 и Ф5. Присваиваются станкам группы ОЦ. Ф4 – ОЦ с позиционной системой управления; Ф-5 с контурной.

Расположение и обозначение осей координат, отвечающих направлениям независимых управляемых движений принимаются в соответствии со стандартом JSO-R841.

В основу положена первая система координат с осями X,Y,Z, которые указывают положительные направления движения инструментов относительно неподвижной заготовки.

Если инструмент не подвижен, а движется заготовка относительно инструмента, то соответствующие ее положительные перемещения, направленные в противоположные стороны обозначаются буквами X`,E`,Z`

За положительные направления перемещений подвижных органов принимают такие их перемещения при которых инструмент и заготовка удаляются друг от друга.

На горизонтально-расточном станка за положительные принимаются: движение шпиндельной бабки вверх по стойке и движение саней стола в направлении от шпиндельной бабки; для пиноли положительным считается ее движение в обратном направлении.

Кроме перечисленных принципов расположения осей пользуются следующими правилами: ось Х всегда располагают горизонтально, а ось Z совмещают с осью вращения инструмента. Лишь в токарных станках ось Z совмещают с осью вращения заготовки.

Если в станке кроме движений по трем основным координатам имеются программируемые перемещения других органов в параллельных направлениях, то соответствующие вторичные и третичные оси обозначаются буквами: U, V, W – вторичные оси; P,Q,R - третичные оси.

Круговые перемещения инструмента относительно заготовки считаются положительными при направлении против часовой стрелки, если смотреть на острие соответствующей оси координат.

Способы отсчета координат – абсолютный и относительный.

При абсолютном – положение начала координат остается фиксированным для всей обработки. На программоносителе записываются абсолютные значения координат последовательно расположенных опорных точек. Достоинство – станок отрабатывает каждый раз от одной и той же точки, отсутствует накопление ошибки. Начало может быть выбрано в любом месте в пределах рабочих ходов и подвижных органов. «плавающий нуль». Такой способ отсчета применяется главным образом в позиционных системах на расточных и сверлильных станках и ОЦ с позиционным управлением. При абсолютном способе отсчета размеров целесообразно применять координатный метод простановки размеров в обрабатываемых заготовках.

В системах с относительным способом отсчета координат за нулевое каждый раз принимается положение исполнительного органа, которое он занимал перед началом перемещения к следующей опорной точке. В программу в этом случае записывают приращения координат при переходе от предыдущей к последующей точке. Первая опорная точка программы называется исходной или старт точкой. Она выверяется при настройке станка и играет роль начала координат, от которого рассчитывается программа обработки данной конкретной заготовки. Наиболее рациональной является простановка размеров цепочкой, при этом происходит накопление ошибок перемещений. В последнее время наметилась тенденция абсолютного отсчета координат и в контурных системах ЧПУ.

По числу управляемых движений (координат) системы ЧПУ могут быть 2,3,4,5 и многокоординатными. Для контурных систем важной характеристикой является число одновременно согласованно управляемых координат. Однако некоторые контурные системы с ЧПУ осуществляют согласованные перемещения не по всем координатам одновременно, а только при отсутствии движения по одной из осей координат. Такие системы с одной неполной координатой иногда обозначают дробным числом, добавляя к целому числу одновременно и согласованно работающих координат еще половину координаты. Например 3,5 (четыре координаты с одной неполной). Число управляемых координат является важной технологической характеристикой станка.

Для обработки заготовки на токарном станке достаточно 2 х координат, для станков с двумя суппортами – 4 (1734Ф3). Сверлильные станки с ЧПУ обычно двух координатные. Для расточных станков – 3 х координатные. Фрезерные не менее 3 х одновременно управляемых координат.

Наиболее рациональными являются пятикоординатные фрезерные станки, у которых дополнительно программируются повороты заготовки и наклоны инструмента.

На современных станках с ЧПУ меняет режимы обработки, доступны для ручного редактирования.

Технологические возможности станков с ЧПУ при прочих равных условиях определяются числом управляемых координат.

По числу управляемых координат станки бывают :

1. Двухкоординатные (Х , Y ).

2. 2,5-координатные (Х , Y и отдельно по Z ).

3. Трехкоординатные (Х , Y , Z ).

4. Четырех- и более координатные (многоцелевые станки и обрабатывающие центры).

Особое внимание следует обращать на станки с индексными осями координат, обычно имеющими маркировку, например, не «5 осей», а «3 + 2 оси». Это означает, что 2 оси данного станка имеют возможность дискретного поворота или перемещения на холостом ходу, фиксацию рабочего органа станка в этом положении и последующую обработку заготовки без перемещения по индексным осям.

Маркировка станков с ЧПУ

Маркировка станков с ЧПУ аналогична маркировке универсальных станков, но для обозначения системы ЧПУ в конце марки вводится буква «Ф» с цифрой:

Ф1 – система ЧПУ с преднабором;

Ф2 – позиционная система ЧПУ (сверлильные и расточные станки с ЧПУ) (см. рис. 1.1);

Ф3 – контурная система ЧПУ (токарные и фрезерные станки с ЧПУ) (см. рис. 1.2);

Ф4 – комбинированная система ЧПУ (Ф2 + Ф3) (многоцелевые станки).

Примеры маркировки станков с ЧПУ : 16К20Ф3 – токарно-винторезный станок с контурной системой ЧПУ; 2Р135Ф2 – вертикально-сверлильный станок с позиционной системой ЧПУ; 2451ПМФ4 – сверлильно-фрезерный расточной станок с комбинированной системой ЧПУ.

Следует отметить, что вышеописанный принцип маркировки станков с ЧПУ справедлив лишь для оборудования, выпущенного в советском пространстве. Производители же современных станков с ЧПУ (в том числе и зарубежные) в подавляющем своем большинстве пользуются внутренними стандартами своих предприятий, слабо коррелирующихся со стандартами других производителей.


Способы программирования станков с ЧПУ

Существуют три способа программирования обработки для станков с ЧПУ :

1. Ручное программирование .

Все операторы станков с ЧПУ и технологи-программисты должны иметь хорошее представление о технике ручного программирования для написания управляющей программы непосредственно на стойке ЧПУ станка или исправления существующей программы.

2. Программирование на пульте УЧПУ (диалоговое программирование с помощью языков высокого уровня) .

В этом случае программы создаются и вводятся прямо на стойке ЧПУ. В настоящее время на станках с ЧПУ применяются современные системы разработки УП высокого уровня. Такие системы позволяют оператору-программисту подготавливать программу обработки детали, определяя последовательность предлагаемых системой переходов лишь с указанием их параметров. Оператор станка может произвести проверку правильности работы УП непосредственно на стойке ЧПУ станка с визуализацией обработки.



3. Программирование при помощи CAM систем .

Программирование при помощи САМ систем позволяет исключить необходимость трудоемких математических расчетов и использовать инструменты, значительно повышающие скорость разработки УП. Зачастую этот способ программирования используется для написания программ изготовления сложных деталей. Однако для адаптации разработанной УП под конкретный станок, требуется постпроцессор, преобразующий управляющие программы в фазовое пространство этого станка.

Кодирование информации независимо от применяемого способа программирования осуществляется в G -коде, имеющем альтернативное название ISO -7bit . Код ISO -7bit кадры УП задает адресным способом и основывается на двоично-десятичной системе.

Информация, представленная в любой управляющей программе, подразделяется
на 3 вида:

· геометрическую (задание перемещения по координатам);

· технологическую (задание режимов обработки, инструмента и т. д.);

· логическую (включение/отключение охлаждения, задание вращения шпинделя и т. д.).

Вопросы и задания для самоконтроля

1. Что такое числовое программное управление станком?

2. Дайте определение системы числового программного управления.

3. Что называется устройством числового программного управления станком?

4. Каково назначение и основные сферы применения позиционного и контурного управления?

5. Что такое управляющая программа?

6. Что называется дискретностью перемещения?

7. Что такое эквидистанта?


Тесты к разделу

1. Числовое программное управление станком – это:



а) управление обработкой заготовки на станке по управляющей программе;

б) совокупность функционально взаимосвязанных технических и программных методов и средств, обеспечивающих управление станком;

2. Система числового программного управления – это:

а) совокупность функционально взаимосвязанных технических и программных методов и средств, обеспечивающих числовое программное управление станком;

б) совокупность функционально взаимосвязанных программных методов и средств, обеспечивающих программное управление станком;

в) совокупность методов и средств, обеспечивающих числовое программное управление станком.

3. Устройство числового программного управления станком – это:

а) часть системы ЧПУ, выполненная как единое целое с ней и выдающая управляющие воздействия на исполнительные органы станка в соответствии с управляющей программой и информацией о состоянии управляемого объекта;

б) часть системы ЧПУ, выдающая управляющие воздействия на исполнительные органы станка в соответствии с управляющей программой и информацией о состоянии управляемого объекта;

в) часть системы ЧПУ, выполненная как единое целое с ней и выдающая управляющие воздействия на исполнительные органы станка в соответствии с управляющей программой.

4. Позиционное управление – это:

а) управление, при котором рабочие органы станка перемещаются в заданные точки без задания траектории движения;

б) управление, при котором рабочие органы станка перемещаются с заданной скоростью по заданной траектории;

5. Контурное управление – это:

а) управление, при котором рабочие органы станка перемещаются с заданной скоростью по заданной траектории;

б) управление, при котором рабочие органы станка перемещаются в заданные точки без задания траектории движения;

в) управление, при котором рабочие органы станка перемещаются с заданной скоростью по заданной траектории или без задания траектории движения.

На производстве, где работают различные станки с числовым программным управлением, используется множество различного программного обеспечения, но в большинстве случаев весь управляющий софт использует один и тот же управляющий код. Программное обеспечение для любительских станков, так же базируется на аналогичном коде. В обиходе его называют «G -код ». В данном материале представлена общая информация по G-коду (G-code).

G-code это условное именование языка для программирования устройств с ЧПУ (CNC) (Числовое программное управление). Был создан компанией Electronic Industries Alliance в начале 1960-х. Финальная доработка была одобрена в феврале 1980-о года как RS274D стандарт. Комитет ИСО утвердил G-code, как стандарт ISO 6983-1:1982, Госкомитет по стандартам СССР - как ГОСТ 20999-83. В советской технической литературе G-code обозначается, как код ИСО-7 бит.

Производители систем управления используют G-code в качестве базового подмножества языка программирования, расширяя его по своему усмотрению.

Программа, написанная с использованием G-code, имеет жесткую структуру. Все команды управления объединяются в кадры - группы, состоящие из одной или более команд. Кадр завершается символом перевода строки (ПС/LF) и имеет номер, за исключеним первого кадра программы. Первый кадр содержит только один символ» %». Завершается программа командой M02 или M30.

Основные (в стандарте называются подготовительными) команды языка начинаются с буквы G:

  • перемещение рабочих органов оборудования с заданой скоростью (линейное и круговое;
  • выполнение типовых последовательностей (таких, как обработка отверстий и резьб);
  • управление параметрами инструмента, системами координат, и рабочих плоскостей.

Сводная таблица кодов:

Таблица основных команд:

Код Описание Пример
G00 Ускоренное перемещение инструмента (холостой ход) G0 X0 Y0 Z100;
G01 Линейная интерполяция G01 X0 Y0 Z100 F200;
G02 Круговая интерполяция почасовой стрелки G02 X15 Y15 R5 F200;
G03 Круговая интерполяция против часовой стрелки G03 X15 Y15 R5 F200;
G04 Задержка на P миллисекунд G04 P500;
G10 Задать новые координаты для начала координат G10 X10 Y10 Z10;
G11 Отмена G10G11;
G15 Отмена G16G15 G90;
G16 Переключение в полярную систему координат G16 G91 X100 Y90;
G20 Режим работы в дюймовой системе G90 G20;
G21 Режим работы в метрической системе G90 G21;
G22 Активировать установленый предел перемещений (Станок невыйдет за их предел). G22 G01 X15 Y25;
G23 Отмена G22G23 G90 G54;
G28 Вернуться на референтную точку G28 G91 Z0 Y0;
G30 Поднятие по оси Z на точку смены инструмента G30 G91 Z0;
G40 Отмена компенсации размера инструмента G1 G40 X0 Y0 F200;
G41 Компенсировать радиус инструмента слева G41 X15 Y15 D1 F100;
G42 Компенсировать радиус инструмента справа G42 X15 Y15 D1 F100;
G43 Компенсировать высоту инструмента положительно G43 X15 Y15 Z100 H1 S1000 M3;
G44 Компенсировать высоту инструмента отрицательно G44 X15 Y15 Z4 H1 S1000 M3;
G53 Переключиться на систему координат станка G53 G0 X0 Y0 Z0;
G54-G59 Переключиться на заданную оператором систему координат G54 G0 X0 Y0 Z100;
G68 Поворот координат на нужный угол G68 X0 Y0 R45;
G69 Отмена G68G69;
G80 Отмена циклов сверления (G81-G84)G80 Z100;
G81 Цикл сверления G81 X0 Y0 Z-10 R3 F100;
G82 Цикл сверления сзадержкой G82 X0 Y0 Z-10 R3 P100 F100;
G83 Цикл сверления сотходом G83 X0 Y0 Z-10 R3 Q8 F100;
G84 Цикл нарезание резьбы
G90 Абсолютная система координат G90 G21;
G91 Относительная система координат G91 G1 X4 Y5 F100;
G94 F (подача) - в формате мм/мин. G94 G80 Z100;
G95 F (подача)- в формате мм/об. G95 G84 X0 Y0 Z-10 R3 F1.411;
G98 Отмена G99G98 G15 G90;
G99 После каждого цикла не отходить на «подходную точку» G99 G91 X10 K4;

Таблица технологических кодов:

Технологические команды языка начинаются с буквы М. Включают такие действия, как:

  • Сменить инструмент
  • Включить/выключить шпиндель
  • Включить/выключить охлаждение
  • Вызвать/закончить подпрограмму

Вспомогательные (технологические) команды:

Код Описание Пример
M00 Приостановить работу станка до нажатия кнопки «старт» на пульте управления, так называемый «технологический останов» G0 X0 Y0 Z100 M0;
M01 Приостановить работу станка до нажатия кнопки «старт», если включен режим подтверждения останова G0 X0 Y0 Z100 M1;
M02 Конец программы M02;
M03 Начать вращение шпинделя по часовой стрелке M3 S2000;
M04 Начать вращение шпинделя против часовой стрелки M4 S2000;
M05 Остановить вращение шпинделя M5;
M06 Сменить инструмент M6 T15;
M07 Включить дополнительное охлаждение M3 S2000 M7;
M08 Включить основное охлаждение M3 S2000 M8;
M09 Выключить охлаждение G0 X0 Y0 Z100 M5 M9;
M30 Конец информации M30;
M98 Вызов подпрограммы M98 P101;
M99 Конец подпрограммы, возврат к основной программе M99;

Параметры команд задаются буквами латинского алфавита:

Код константы Описание Пример
X Координата точки траектории по оси X G0 X0 Y0 Z100
Y Координата точки траектории по оси Y G0 X0 Y0 Z100
Z Координата точки траектории по оси Z G0 X0 Y0 Z100
F Скорость рабочей подачи G1 G91 X10 F100
S Скорость вращения шпинделя S3000 M3
R Радиус или параметр стандартного цикла G1 G91 X12.5 R12.5 или G81 R1 0 R2 -10 F50
D Параметр коррекции выбранного инструмента M06 T1 D1
P Величина задержки или число вызовов подпрограммы M04 P101 или G82 R3 Z-10 P1000 F50
I,J,K Параметры дуги при круговой интерполяции G03 X10 Y10 I0 J0 F10
L Вызов подпрограммы с данной меткой L12 P3
В настоящее время для программирования систем ЧПУ используется множество языков программирования, в основе которых лежит универсальный язык ИСО 7 бит. Однако каждый производитель вносит свои особенности, которые реализуются через подготовительные (G-коды) и вспомогательные (M-коды) функции.

Функции с адресом G – называются подготовительными , они определяют условия работы станка связанные с программированием геометрии перемещения инструмента. Подробное описание G-кодов можно найти в главе код ИСО 7 бит .

В данной главе подробно рассмотрим назначение вспомогательных функций.

Функции с адресом M – называются вспомогательными (от анг. Miscellaneous) и предназначены для управления различными режимами и устройствами станка.

Вспомогательные функции могут использоваться одиночно или совместно с другими адресами, например, кадр ниже производит установку инструмента с номером 1 в шпиндель.

N10 T1 M6, где

T1 – инструмент номер 1;
M6 – смена инструмента;

В данном случае под командой М6 на стойке ЧПУ скрывается целый набор команд, которые обеспечивают процесс замены инструмента:

Перемещение инструмента в позицию смены;
- выключение оборотов шпинделя;
- перемещение устанавливаемого инструмента в магазине;
- замена инструмента;

Использование М-кодов допускается в кадрах с перемещением инструмента, например в строке ниже охлаждение включится (M8) одновременно с началом движения фрезы.

N10 X100 Y150 Z5 F1000 M8

М-коды, включающие какое-либо устройство станка, имеют парный М код, который это устройство выключает. Например,

M8 – включить охлаждение, M9 – выключить охлаждение;
M3 – включить обороты шпинделя, M5 – выключить обороты;

Допускается использование нескольких М команд в одном кадре.

Соответственно чем больше устройств имеет станок, тем больше М команд будет задействовано в его управлении.

Условно все вспомогательные функции можно разделить на стандартные и специальные . Стандартные вспомогательные функции используются производителями ЧПУ для управления устройствами, имеющимися на каждом станке (шпиндель, охлаждение, смена инструмента и т.д.). Тогда как специальные программируют режимы на одном конкретном станке или группе станков данной модели (вкл/выкл измерительную головку, зажим/разжим поворотных осей).

На картинке выше представлен поворотный шпиндель многоосевого станка. Для увеличения жесткости при позиционной обработке станок оснащен зажимами поворотных осей, которые управляются М кодами: M10/M12 – включить зажимы для осей A и С. М11/М13 – выключить зажимы. На другом оборудовании производитель станка может данные команды настроить на управление другими устройствами.

Список стандартных М команд

M0 – останов программы;
M1 – останов по требованию;
M2 – конец программы;
M3 – включить обороты шпинделя по часовой стрелке;
M4 – включить обороты шпинделя против часовой стрелки;
M5 – останов шпинделя;
M6 – автоматическая смена инструмента;
M8 – включить охлаждение (как правило СОЖ);
M9 – выключить охлаждение;
M19 – ориентация шпинделя;
M30 – завершение программы (как правило со сбросом всех параметров);
M98 – вызов подпрограммы;
M99 – возврат из подпрограммы в основную;

Специальные вспомогательные функции производитель станка описывает в соответствующей технической документации.